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If  we know the causality relation between approximately known pairs o f  events, 
will we still be able to reconstruct affine coordinates? Our answer is: yes, we can 
reconstruct coordinates uniquely (modulo Lorentz group) from approximately 
measured coordinates. In this sense, we make the Alexandrov-Zeeman result 
more realistic. 

1. INTRODUCTION 

Laws of  special relativity are usually described in terms o f  affine 
coordinates. Formulas of Minkowski geometry (i.e., geometry of special 
relativity) are usually described in terms of affine coordinates x0 . . . . .  x3. 
So, to compare the predictions of special relativity with real life, we need to 
find a way to measure the affine coordinates of different events. 

in the original papers by Einstein and in the textbooks that describe 
special relativity, usually a simplified situation is considered when we have 
inertial noninteractive bodies traveling in vacuum. Trajectories of these 
bodies are described by straight lines in a 4-dimensional space-time. Using 
these lines, we can measure the affine coordinates of every event, i.e., we 
can reconstruct the desired affine coordinate system. 

In real-life situations, measuring affine coordinates is often a problem. In 
real life when the objects are interacting with each other it is often difficult 
to find a way to measure the ideal (affine) coordinates. As an example of 
such difficulties we can cite celestial mechanics (Brumberg, 1991; Finkel- 
stein and Kreinovich, 1976; Finkelstein et aL, 1983; Cannon et al., 1986), 
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where very complicated algorithms are used to relate measured data to affine 
coordinates (of course, part of the complexity in this astronomy problem is 
caused by the fact that the effects of general relativity also have to be taken 
into consideration, but the effects of special relativity are also causing much 
trouble). 

It would be nice to have a general way to measure affine coordinates. 
Methods that celestial mechanics uses to reconstruct affine coordinates and 
to compare the experimental results with the theoretical predictions of 
special relativity are based on using specific equations of celestial mechanics. 

Since celestial mechanics is not the only possible area of application of 
special relativity, it is necessary to have a general method of reconstructing 
affine coordinates from physical measurements. 

The Alexandrov-Zeeman theorem shows that such a general method is 
possible. A mathematical theorem that established the theoretical possibility 
of reconstructing affine coordinates from measurement results was first 
proved by Alexandrov (1950) [a detailed proof appeared first in Alexan- 
drov and Ovchiunikova (1953)]. Namely, he showed that if for every pair 
of events a and b, we know whether a can influence b or not (i.e., whether 
a causally precedes b or not), then we will be able to reconstruct coordi- 
nates almost uniquely (modulo possible linear transformations, namely, 
modulo Lorentz transform, shifts, and dilations). The precise mathematical 
formulation of this result is as follows: 

Definition 1. By M we denote a 4-dimensional space R 4 (this space is 
sometimes called an arithmetic space) with a special relation precedes that 
is defined as follows. Elements of M will be called events [in other words, 
an event is an element a = (ao, al, a2, aa)~M]. The real numbers ai that 
form an event a are called its affine coordinates. We say that an event a 
precedes event b (or causally precedes b), and denote it by a < b, if 

bo>a0 and b o - a o > > . [ ( b l - a l ) 2 + ( b 2 + a 2 ) 2 + ( b 3 - a 3 ) 2 ]  1/2 

Alexandrov's Theorem. Assume that f :  M ~ M  is a 1-1 mapping of M 
onto itself such that a < b ifff(a) <f(b). Then f is linear. Moreover, f is a 
composition of a Lorentz transformation, a shift in 4-space, and a dilation. 

Let us show that this theorem is directly related to the problem of 
reconstructing affine coordinates from the measurement data. Indeed, 
suppose that we made many experiments, after which, for every pair of 
events, we know whether the first event causally precedes the second one 
or not. 

To describe these experiments in mathematical terms, we must some- 
how mark the events, i.e., describe them by numbers. Since we do not yet 
know how to measure affine coordinates of these events, we will use some 
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coordinates. In other words, we will use four arbitrary measurable quanti- 
ties to serve as four (initial) coordinates. For  example, as A0, we can take 
the time measured by some noninertial clock, and by Ai, distances mea- 
sured by noninertial rulers. 

We will call the resulting 4-vector A = (Ao, A1, A2, A3) a physical 
event. To distinguish physical events (i.e., initial coordinates) from the 
events described in terms of  their desired affine coordinates, we will use 
capital letters A, B . . . .  for physical events, and lowercase letters a, b . . . .  
for events in terms of  affine coordinates xv 

For  every two physical events A and B we know from experiment 
whether A causally precedes B or not. We want to use this information to 
reconstruct affine coordinates of  all events. In other words, we want to 
assign to every physical event A four values a = F(A) in such a way that 
A < B if and only if the events a = F(A) and b = F(B) are causally related 
according to the formulas of  special relativity. 

Definition 2. By a causality relation ~ ,  we mean a partial ordering 
relation on R 4. A 1-1 mapping F: R 4 ~ M  of  R 4 onto M is called a 
coordinate system. We say that in a coordinate system F, a causality relation 
~, is described by (the formulas of) special relativity if and only if for every 
A, B ~ R  4, A ~,B if  and only if for a = F(A) and b = F(B), we have a < b, 
i.e., if 

bo > ao and bo - ao > [(bl - a l )2 .~_ (b 2 _ a 2 ) 2  + (b 3 _ a3)2]1/2 

Comment. To avoid misunderstanding, let us repeat the difference 
between M and R4: M is a 4-dimensional space with an additional ordering 
relation < (that  is described by the formulas of  special relativity); R 4 is a 
4-dimensional space on which the causality relation (denoted by ~.) may 
be defined by different formulas. 

We consider the case when such a coordinate system exists. It is well 
known that this mapping is not uniquely determined by the causality 
relation. For  example, if in a coordinate system F causality is described by 
the formulas of  special relativity, then for every 4-vector {s;} the same is 
true for the "shifted" coordinates F~ = F; +s~. Similarly, if we apply a 
dilation F; -~ 2Fi (2 = const > 0) or a Lorentz transformation to any coordi- 
nate system in which causality is described by formulas of  special relativity, 
then the new coordinate system will have the same property. 

Alexandrov's theorem shows that these are the only possible sources of  
nonuniqueness. Namely, the following corollary is true: 

Corollary I. Suppose that a causality relation ~. is fixed. I f  F and G 
are two different coordinate systems in which causality is described by 
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formulas of special relativity, then G = T(F), where T is a composition of 
shifts, dilations, and Lorentz transformations. 

Proof. Indeed, since in both coordinate systems F and G the causality 
relation is described by the formulas of  special relativity, we have A .~ B iff 
F(A) < F(B) iff G(A) < G(B). Therefore, for T = G ( F -  1), we have a < b iff 
Ta < Tb. Hence, according to Alexandrov's theorem, T is a composition of  
a shift, a dilation, and a Lorentz transformation. QED 

Historical Comment. This theorem became well known after E. C. 
Zeeman published a more general result in English (Zeeman, 1964) [for 
further mathematical results, see, e.g., Kuz'minykh (1975, 1976), Benz 
(1977), Lester (1977a, 1983), and Kosheleva et al. (1979a); for a modern 
textbook description, see Naber (1992)]. The relationship between this 
result and the actual astronomical methods of reconstructing affine coordi- 
nates from measurements is shown in Kosheleva et al. (1979b). 

In real life, measurements are never absolutely accurate. Alexandrov's 
theorem says that if we know exactly which pairs are causally connected 
and which pairs are not, then we can reconstruct affine coordinates. How 
can we determine that experimentally? How can we, given events a and b, 
figure out experimentally whether a causally precedes b or not? 

To answer this question, let us recall how causality is determined in 
real-life situations. For example, how can we prove that a suspect actually 
murdered a victim? Of course, there can be lots of indirect evidence, but the 
only direct proof will be if we find an individual trace of the suspect on the 
victim, a trace that cannot be explained by a random coincidence: e.g., his 
fingerprints, or his DNA trace, etc. 

A similar approach can be used to check causal relation between 
different events: while in an event a, we emit a signal of a special type (of  
unique type, so that such a signal cannot appear as a random noise). Then, 
if a trace of this signal is found in b, we conclude that a causally precedes 
b, else that a does not precede b. 

In a real-life experiment, we can only handle finitely many events, and 
we can measure the coordinates of events only with some accuracy. As a 
result, after reconstruction, we will have only approximate values of affine 
coordinates. So, the more accurate physical interpretation of Alexandrov's 
theorem is as follows: if we increase the number of events, and make more 
and more accurate measurements, then we will get more and more accurate 
values of the affine coordinates of these events. In the limit of infinitely 
many events covering all space-time and absolutely accurate measurements, 
we will get the absolutely accurate affine coordinates. 

The uncertainty principle leads to a restriction on the accuracy with 
which we can measure some physical quantities. The above application of 
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Alexandrov's theorem to real-life physical situations is based on the 
assumption that in principle we can measure every physical quantity with 
an arbitrary accuracy. This is true in "classical" (nonquantum) physics. If  
we apply this idea to real-life events a and b, then for the pairs of events 
that are separated by microscopic distances, the classical description does 
not work: at such distances, quantum effects become dominant. 

This leads to the following problem. According to the above- 
described method, the experimental procedure of  determining the causality 
relation is as follows. Suppose that we have an event A for which we have 
measured the values Ai of  its coordinates. To list the events that are 
causally following A, during an event A, we emit (in all spatial directions) 
a signal with a certain complicated pattern. At several spatial locations we 
place sensors that all the time try to pick a signal with this particular 
pattern. If  in some moment of  time a sensor picks that signal, this means 
that this particular event B (picking that signal) causally follows A. To 
apply the above-described methodology, we must measure (initial, 
nonaffine) coordinates b; of  this event B. In particular, we must measure 
the difference B o -  Ao between the values of  noninertial time in A and  in 
B. 

According to Heisenberg's uncertainty principle, if we want to mea- 
sure time with accuracy At, then, to implement this measurement, we must 
use the amount  of  energy E that is greater than or equal to h/At (where h 
is the Planck constant). If  we spend less energy, then we will not get the 
desired accuracy. Therefore, the average power P that needs to be applied 
is ~E/T > h/(At T), where by T we denote the time interval between the 
two events. So, the smaller this time interval, the more power we need to 
apply to measure the coordinates B0 with a given accuracy. But the more 
power we apply, the more we disturb the system. If  a sufficiently huge 
amount  of  power is applied, it will cause the sensors to melt and thus make 
all the measurements impossible. So, for every measuring technology, there 
is a maximum amount of  power Po that can be applied. As a result, if  we 
measure the time interval of  size ~ T, we can only get an accuracy At such 
that h/(At T)< Po, i.e., such accuracy At that At > h/(PoT). In other 
words, we cannot measure a time interval of  size T with an accuracy better 
than k/T for some constant k = h/Po. 

Similarly, from another Heisenberg inequality that relates measuring 
spatial coordinates and momentum, we conclude that we cannot measure a 
spatial distance of  size r with an accuracy better than kl/r for some 
constant r. 

Combining these two inequalities, we can conclude that the accuracy 
with which we can measure the coordinates Bi of  the event B (when a 
sensor picks a signal) is limited from below (and this accuracy decreases 
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and tends to 0 as B goes further away from A, i.e., as the differences 
B o -  A0 and/or  Bi - A i  increase). 

So, for a given measurement technique, we cannot measure the coordi- 
nates of  B with arbitrary accuracy. In other words, we can "measure 
causality" only approximately. A natural question is:/s this approximately 
measured causality su3ficient to reconstruct affine coordinates? 

What we plan to do. Our answer to this question is "yes." Yes, we can 
reconstruct coordinates uniquely (modulo Lorentz group) from an approx- 
imately measured causality relation. 

In Section 2 we give the necessary definitions, and the precise mathe- 
matical formulation of  our result. Its p roof  is given in Section 3. 

2. DEFINITIONS AND THE MAIN RESULT 

Notation. For  a, b~M, let us denote 

d(a, b) = [(ao - bo) 2 + (a, - b,)  2 + a2 - b2) 2 + (a3 - b3)2] 1/2 

Comment. This "Euclidean" metric describes to what extent the points 
a and b are far away from one another. We are using this metric because 
as already mentioned, the accuracy with which we can measure the 
difference between the coordinates of  the two events a and b tends to 0 as 
a and b become more and more separated (either in time or in space). The 
distance d is introduced to describe this "separation." This description has 
an evident drawback: namely, this distance is not Lorentz- invar iant  (i.e., 
d changes if we apply a Lorentz transformation). However, we will use d in 
our formulations because the final result will not depend on the exact 
choice of  d. 

Definition 3. Assume that a function h: R + ~ R  + from the set of  
positive real numbers R + to itself is given, and h(t) ~ 0 as t -~ ~ .  We say 
that a set C c M x M of  pairs (a, b), a, b ~M, is a measured causality if  the 
following two properties are true: 

1. If  (a,b)~C, then there exists a b ' ~ M  such that a < b "  and 
d(b, b') < h(d(a, b)). 

2. I f  (a, b)q~ C, then there exists a b ' ~ M  such that a ~ b '  and 
d(b, b') <- h(d(a, b)). 

Comments. 1. To avoid confusion, let us mention that measured 
causality is not necessarily a causality relation in the sense of  Definition 2. 
Our only requirement on the measured causality is that it is close to the 
causality relation (close in the precise sense described by this definition). 

2. The function h(t) describes the accuracy with which we can measure 
the difference between the coordinates of  the events a and b for which 
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d(a, b)= t. We have already seen that from Heisenberg's principle it 
follows that h(t)~ k/t  for some constant k and therefore h( t )~0  as 

The set C represents the results of approximately measured causality 
pairs. If  (a, b)e C, this means that for some event b' we actually detected 
the influence of a. In the ideal case of absolutely precise measurements we 
would then have placed the pair (a, b') into the list C of  the pairs for which 
we have experimentally confirmed that a causally precedes b'. However, 
since we are unable to measure the coordinates of  this event b' precisely, we 
placed into this list C a slightly different pair (a, b), where b are approxi- 
mately measured coordinates of b'. According to the meaning of the 
function h(t), the accuracy with which we measure these coordinates is 
< h(d(a, b)). In other words, d(b, b') < h(d(a, b)). 

The second condition can be interpreted in the same manner: if 
(a, b)r this means that for some event b' that was approximately 
measured as b we did not find any influence of a and therefore concluded 
that a r b'. Since we can measure the coordinates with accuracy h(d(a, b)), 
we have d(b, b') ~ h(d(a, b)). 

Theorem. Assume that C c M x M is a measured causality, f :  M ~ M 
is a continuous 1-1 mapping of M onto itself such that the inverse 
mapping is also continuous, and (a,b)eC iff (f(a),f(b))eC. Then f is 
linear. Moreover, f is a composition of  a Lorentz transformation, shift in 
4-space, and dilation. 

Comment. We have explained how Alexandrov's theorem leads to a 
conclusion that from the causality relation we can reconstruct affine 
coordinates. Similarly, one can conclude from our theorem that to recon- 
struct affine coordinates it is sufficient to know approximately measured 
causality. Let us give the precise definitions. 

Definition 4. By a result of measuring causality we mean a set of pairs 
c R 4 x R 4. A continuous 1-1 mapping F: R4--*M onto M is called a 

coordinate system if the inverse mapping F-1 is also continuous. We say 
that in a coordinate system F the result C of measuring causality is described 
by special relativity iff the set F((7) = {(F(A), F(B))[(A, B)~ ~} is a mea- 
sured causality (in the sense of  Definition 3). 

Corollary 2. Suppose that a result (7 of measuring causality is given. If  
F and G are two different coordinate systems in which C is described by 
(formulas of) special relativity, then G = T(F), where T is a composition of 
a shift, a dilation, and a Lorentz transformation. 
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Comments. 1. This  corol lary  proves  tha t  affine s tructure can be 
uniquely reconstructed f rom the approx imate ly  measured  causali ty (i.e., 
whatever  coordinates  we reconstruct ,  they will be related by a l inear 
fo rmula  and hence the not ions  o f  a line, a plane,  etc., will be the same in 
bo th  coord ina te  systems). 

2. This  corol lary follows f rom our  theorem in the same m a n n e r  as 
Corol la ry  1 follows f rom Alexandrov ' s  theorem.  

3. P R O O F  O F  T H E  T H E O R E M  

The main idea of this proof is as follows: We will p rove  tha t  if  f satisfies 
the condi t ion o f  the theorem (i.e., i f  f preserves C), t h e n f a l s o  preserves the 
causali ty relat ion < .  Then,  we can apply  Alexandrov ' s  theorem to get the 
desired conclusion. 

Notation. We will need the following no ta t ion  ( the major i ty  o f  them 
are more  or less s tandard  in this field; see, e.g., N a b e r  (1992)): 

a <~ b denotes 

bo - ao > [(bl - am) 2 + (b2 - a2) 2 --[- (b3 - a3)2] 1/2 

a denotes  a 3D vector  pa r t  (a~, a2, a3) of  an arb i t ra ry  event  a. 
p(a ,  b) denotes  [(al - bl)2 + (a2 - b2) 2 + (a3 - b3) 2] 1/2 (Eucl idean dis- 

tance in a 3D space). 
~(a, b) denotes  b 0 - ao - p(a ,  b). 
a + denotes {bla < b }, called a future cone of  an event  a. 
~+ denotes {hi(a, b)~C}, called an approximate future cone of  an 

event  a. 
a is defined as {bib <a}, called a past cone. 
~ -  is defined as {bl(b, a)~C}, called an approximate past cone. 

Lemma. We will p rove  tha t  for  every two events a and  b 

a ~ b ~ 3 c ( ~  + ___ ~+ u ? - )  

and  

3c(~ "+ _ ~ +  w ? - )  ~ ( a  < b v a = b) 

Proof of  the Lemma. 1. Let  us first p rove  that  if  a <~ b, b < x, and  
d(x, y) < (1/2)z(a, b), then a < y .  

By definition o f  a <~ b we have z(a, b) > 0. By the definition o f  z we 
have 

bo - ao = p(a,  b) + z(a, b) (1) 
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From b < x we conclude that 

xo--  bo > p(x, b) 

From the inequality 

d(x, y) = [(x o - y o )  2 + p2(x, y)] i/2 _< (1/2)z(a, b) 

we conclude that tYo--Xo[ < (1/2)z(a, b) [hence 

1 
Yo - xo -> - ~  ffa, b)] 

and 

(2) 

(3) 

1 
p(x, y) -< ~ ffa, b) (4) 

Adding equation (1) with inequalities (2) and (3), we conclude that 

Yo - ao = (Yo - Xo) + (xo - bo) + (bo - ao) 

1 
-> - -  ~(a, b) + p(x, b) + p(b, a) + ~(a, b) 

2 

1 
= p(b, a) + p(x, b) + ~ z(a, b) 

Because of  (4), we can conclude that 

Yo - ao -> p(b, a) + p(x, b) + p(y, x) (5) 

But p is a Euclidean metric, so the triangle inequality leads to 
p(b, a) + p(x, b) + p(y, x) > p(a, y). Hence, from (5), we conclude that 

Y0 - ao > P(Y, a), i.e., that a < y. 
2. Let us now prove that if a ~ b, then there exists a real number s > 0 

such that if x e b  ~+ and d(a, x) < s, then x e ~  + 
Indeed, since h(t) -*0 as t ~ oo, there exists a to such that if t > to, then 

h(t) <(1/4)'c(a,b). Let us show that the desired property is true for 
s = to+d(a,  b). Indeed suppose that x e ~  "+ and d(a, x) ~ s. Let us prove 
that x e~ + by reduction to a contradiction. 

Assume that x ~  + [i.e., that (a, x)~C].  By Definition 3, this means 
that there exists an x '  such that d(x, x ' ) <  h(d(a, x)) and a ~ x' .  Since 
d(a, x )>-s  > to, from the choice of  to we conclude that h(d(a, x ) )< 
(1/4)z(a, b). Theretbre, 

d(x, x')  < 1 z(a, b) (6) 
/4 
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From (b, x) e C we can likewise conclude that there exists an x"  such 
that d(x", x) < h(d(b, x)) and b < x". From triangle inequality we conclude 
that d(x, b) > d(a, x) - d(a, b). Since d(a, x) >- s = t o + d(a, b), we conclude 
that d(x, b) > to + d(a, b) - d(a, b) = to and hence h(d(x, b)) < (1/4)z(a, b). 
So, d(x, x") < (1/4)z(a, b). From this inequality and from (6) we conclude 
that d(x', x") < (1/2)z(a, b). Therefore, applying part 1 of  the proof  with x" 
instead of  x and x '  instead of  y, we can now conclude that a < x ' .  This 
conclusion contradicts our choice of  x ' ,  according to which a ~ x ' .  This 
contradiction shows that the assumption that x~t~ + was impossible, and 
hence x ~ +. 

3. Similarly, we can prove that if a ~. b, d(a, x) > s (where s is the 
same as in part 2) and b < x, then x e6  +. 

Indeed, if x r  then, according to Definition 3, there exists an event 
x '  such that d(x, x')<-h(d(a, x)) and a ~ x ' .  Since d(a, x ) >  s, we have 
h(d(a, x)) < (1/4)z(a, b). Therefore, d(x, x') < (1/4)z(a, b) < (1/2)z(a, b). 
Since b < x, from part 1, we can conclude that a < x ' ,  which contradicts 
a ~ x ' .  This contradiction proves that the assumption x ~6 + is impossible, 
and so x ~ 6  +. 

4. Let us now prove that if a ~ b, then there exists a c such that 
~'+ c ~+ u,~-. 

Indeed, let us take c - - a + ( 2 s + ~ ( a , b ) , 0 , 0 , 0 )  and d = a +  
(2s, 0, 0, 0), where s was defined in part 2. Then d ~ c and z(d, c) = T(a, b). 
We will prove the desired statement for this c. 

4.1. We have already proved that if x ~  "+ and d ( a , x ) > s ,  then 
x e ~  +. So, in order to complete the proof  of  the desired statement, it is 
sufficient to prove that if x ~ ' +  and d(a, x) < s, then x e ~ - .  To prove this 
auxiliary statement, we will prove a slightly stronger statement: that if 
d(a, x) < s, then x ~ - .  

4.2. To prove that statement, we will first prove that if d(a, x) < s, 
then x < d and d(c, x) > s. Then, arguing just as in part 2, we will be able 
to conclude that (x, c)~ C, i.e., that x ~ ~- .  

In order to use the arguments similar to the ones used in part 2, it is 
necessary to make the following remark. In that proof, from the assump- 
tion that x ~  + [i.e., that (a,x)q~C], we immediately concluded (using 
Definition 3) that there exists an x '  such that d(x, x ' ) <  h(d(a, x)) and 
a ~ x ' .  In our case, if we assume that x ~ - ,  then we cannot simply refer 
to Definition 3 and make a similar conclusion that there exists an x '  such 
that x '  ~ c and d(x, x') = d(c, c') < h(d(x, c)). However, this conclusion is 
still true. Indeed, if x C?- ,  then (by definition of  a measured causality) it 
means that there exists an event c'  such that x ~ c'  and d(c, c') < h(d(x, c)). 
Therefore, for x '  = x + c - c', we have x '  ~ c and d(x, x') = d(c, c') < 
h(d(x, c)). 
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4.3. Let  us prove that  d(c, x) > s. Indeed, f rom the definition o f  c, we 
can conclude that  d(a, c )=  2s + ~(a, b). Therefore,  f rom the triangle in- 
equality, we can conclude that  d(c,x)  > d ( a , c ) - d ( a , x ) .  But 
d(a, c) = 2s + z(a, b) > 2s, and d(a, x) < s, hence d(c, x) > s. 

4.4. Let us now prove that  x < d. Indeed, 

d(a, x) = [(ao - Xo) z + p2(a, x)] m < s 

implies that  tao - Xo[ < s and p(a,  x) < s. We constructed d as a 4-vector 
(do, d) = (ao + 2s, a). Therefore,  

do - Xo = (do - ao) - (ao - Xo) = 2s - (a o - Xo) > 2s - s = s 

and p(d ,  x )  = p (a ,  x )  < s. H e n c e ,  do - x0 > s > p(x,  d), and x < d. 
Both  statements are proved,  and so is par t  4. 
5. Let  us now prove that  if there exists a c such tha t /7+  c t$ + u ~ : ,  

t h e n a < b o r a = b .  
5.1. We will prove this by reduct ion to a contradict ion.  Suppose that  

the condi t ion is true (i .e. , /7 + c ~+ u ~ -  for some c), but  the conclusion is 
not ,  i.e., a ~ b  and a e b. This means that  b o - a o < p ( a , b ) ,  ile., 
z(a, b) = b o - a0 - p(a,  b) < 0. 

First, we will consider the case when b r a. In  this case, to arrive at a 
contradict ion,  we will consider the following sequence o f  events: 

x <N) = (b o + Np(a, b) 

1 
--  ~ z(a,  b), b + N ( b  - a))  ( N  = 1, 2 . . . .  ) 

We will prove that  for sufficiently large N, the following three statements 
are true: 

�9 x(N)~:./7 -k- 

g x(mr + 
,, x ( m r  

In  other  words,  we will prove that /7+ is no t  a subset o f  the union  fi + w ~ - ,  
which is cont ra ry  to our  assumption.  So, to get the desired contradict ion,  
let us prove the above three statements. 

5.1.1. Let us prove that  for  sufficiently large N, x(m~/7 +. 
Indeed,  one can easily check that  for  all N, x (m > b ' ,  where we 

denoted 

b ' = b +  0 ,0 ,0  

and b ~. b" [~(b, b') = -�89 b)]. F r o m  par t  3 we can now conclude that  
there exists an s such that  if d(b, x (m) >- s, then x(me/7+. 
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To find out when this inequality d(b, x (m) > s is true, let us estimate 
the distance d(b, x (m) >-s. 

We have x~ m - bo = Np(a, b) - (1/2)~(a, b) > Np(a, b), and 

p(b, x (m) = {[N(b - a)12) '/2 = Np(a, b) 

Therefore, 

d(x (N), b) = [(X(o m - bo) 2 + p2(x(m, b)] 1/2 

> [2NZp2(a, b)] '/2 = x/2 Np(a, b) 

We are considering the case when a ~ b ,  hence p ( a , b ) > 0 ,  and 
d(x (m, b) ~ oo as N---} oo. Therefore, for sufficiently large N, d(x (m, b) > s, 
and thus x(N)~b "+. 

5.1.2. Let us now prove that for sufficiently large N, x(N)r +. 
We will prove it by reduction to a contradiction. Assume that there 

exist arbitrarily large integers N for which x(me8 +. This means that for 
every such N, there exists an event x (~)" such that d(x(m,x (u)') < 
h(d(x (m, a)), and a < x (u)'. The distance d(x (m, a) can be estimated from 
the triangular inequality: d(x (N), a) > d(x (m, b) - d(a, b). Since we have 
already proved in part 5.1.1 that d(x (m, b) --* oo as N ~ ,  we can conclude 
that d(x(m,a)~oo.  Since h(t)~O as t ~ ,  we can conclude that 
h(d(x (m, a))~0.  In particular, starting from some No, we will have 
h(d(x (m, a)) < -�88 b). 

We assumed that there exists an infinite increasing sequence of values 
of N for which x ( m ~  +. We can delete the values N < No and still have an 
infinite sequence. So, without losing generality, we can assume that for all 
N from our sequence, h(d(x(m, a)) < -�88 b) and, therefore 
d(x (m, x (m') < - �88 b) and a < x (m'. 

From a < x (m' we conclude that X(o m' - ao - p(x (u)', a) > 0 and hence 

X(o m ' -  ao > p(x (N)', a) (7) 

From d(x (m, x (m') < -�88 b) it follows that Ix(o u) - X(om'[ < -�88 b) and 
p(x (N), x (m') < -�88 b). Therefore, x~ ~v) > X(o N)" + �88 b), and (from the 
triangle inequality) 

p(x (m, a) < p(x (m', a) + p(x (u), x (m') < p(x (~)', a) - ~ ~(a, b) 

So, p(x (N)', a) > p(x (~), a) + �88 b). Therefore, from (7), we conclude that 

X(o iv) - �88 b) - ao > p(x ('v)', a) > p(x (Iv), a) + �88 b) 

So, 

1 
x[ N) - ao - p(x (m, a) > ~ ~(a, b) (8) 
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From the definition of  x (N), one can easily find that 

1 
x(O N) -- ao = ---~ "c(a, b) + (bo - ao) + Np(a, b) 

and p(x (u), a) = (N + 1)p(a, b). I f  we substitute these values into (8), we get 
the following inequality: -�89 b) + (bo - ao) - p(a, b) > �89 b). Moving 
the term with z(a,b) into the right-hand side, we conclude that 
(b0 - a0) - p(a, b) > z(a, b), while by definition, z(a, b) = (bo - ao) - 
p(a, b) (a contradiction). 

This contradiction shows that at most finitely many elements of  the 
sequence x (N) belong to ~+, so, starting from some N, x(N)r +. 

5.1.3. Let us now prove that for sufficiently large N, x(N)r - .  
We will prove this statement also by reduction to a contradiction. 

Indeed, assume that there exist arbitrarily large integers N for which 
x(N)~?. - .  By definition, this means that for every such N there exists an 
event c (N) such that x(N) < C (N) and d(c (N), c ) <  h(d(x (N), c)). Then, as 
one can easily see, for x ( N ) ' = X ( m + C - - C  (N) we have x (N) '<C  and 
d(x (N), x (m') < h(d(x (m, e)). Similarly to part 5.1.2, the distance d(x(N)i e) 
can be estimated from the triangular inequality: d(x (N), c) > d(x (N), b ) -  
d(b, c). Since we have already proved in part 5.1.1 that d(x (N), b ) ~  ~ as 
N ~  ~ ,  we can conclude that d(x  (N), c ) ~  oo. Since h ( t ) ~ 0  as t ~ ~ ,  we 
can conclude that h(d(x (m, r  In particular, starting from some No, 
we will have h(d(x (u), c)) < -�88 b). 

Similarly to part 5.1.2, without losing generality, we can assume that 
for all N from our sequence, h(d(x (N), c ) ) < - � 8 8  and therefore 
d(x (u), x (m') < -�88 b) and x (m" < e. 

From x(Nu < e we conclude that x(o N)'<- Co. From d(x (N), x (N)') < 
-�88 6) we conclude that Ix(o N) - x(o N)'] < -�88 b). Therefore, 

x(o N) < x(ON)'--~ z(a, b) <_ e o - ~  z(a , b) 

But we have chosen x (N) in such a way that 

1 
x(o u) = bo + Np(a, b) - ~ z(a, b) ~ oo 

as N ~  ~ .  Therefore, the inequality x(o N) < Co-  (1/4)z(a, b) cannot be true 
for arbitrarily large N. 

This contradiction proves that our assumption was wrong, and, start- 
ing from some N, x(N)r - .  

5.2. We have proved the lemma for the case when a # b. To complete 
the proof  of  the lemma, it is necessary to consider the case when a = b. In 
this case a r b means that b0 < a0 (and hence b < a). As an example of  a 
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sequence x (N) with the property that x(~V)e~ '+, x(~)r +, and x(~)r - for 
sufficiently large N we can take x (N) = (bo - �89 b), b) + (N, N, 0, 0). The 
proof is similar to the case a # b. The lemma is proved. 

Proof of the Tkeorem. 1. Since f preserves C, f also preserves the 
approximate future and past cones. This means that b e~ + ifff(b)~f(a') + 
and b ~ 8 -  iff f(b) ef(a)- .  Therefore, if we define a . ~ b  as 
3c(K + ___ ~+ u S - ) ,  then we conclude that a ~ b  i f f (a )  ~.f(b). 

By C(a) let us denote the set {bla ~. b}. Then b ~C(a) i f f f (b)~ C(f(a)) 
and, according to the lemma, a ~ b--*beC(a) and b~C(a)~(a  < b v 
a~b). 

2. Since f is continuous and its inverse mapping is also continuous, 
we conclude that b eC(a) (where .g denotes a closure of the set X) iff 
f(b) ~ C(f(a)). 

3. Because of the lemma, {bla ~ b} ~_ C(a) ~_ {bla < b v a = }b. 
But it is known that the closures of these two sets {bla ~.b} and 
{bla < b v a = b} coincide with a + u {a}. Therefore, C(a) = a + u {a}. So 
condition 2 can be written as follows: b e a + u  {a} i f f f ( b ) E f ( a ) + u  {f(a)}. 
S ince f i s  a 1-1 mapping, from this condition we conclude that b~a + iff 
f(b) ef(a) +, i.e., a < b ifff(a) <f(b) .  Therefore, we can apply Alexandrov's 
theorem to prove that f is linear, and that f is a composition of a shift, a 
dilation, and a Lorentz transformation. QED 
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